Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Animals (Basel) ; 11(12)2021 Dec 14.
Article in English | MEDLINE | ID: covidwho-1628466

ABSTRACT

Over time, feline viruses have acquired elaborateopportunistic properties, making their infections particularly difficult to prevent and treat. Feline coronavirus (FCoV) and feline herpesvirus-1 (FeHV-1), due to the involvement of host genetic factors and immune mechanisms in the development of the disease and more severe forms, are important examples of immune evasion of the host's innate immune response by feline viruses.It is widely accepted that the innate immune system, which providesan initial universal form of the mammalian host protection from infectious diseases without pre-exposure, plays an essential role in determining the outcome of viral infection.The main components of this immune systembranchare represented by the internal sensors of the host cells that are able to perceive the presence of viral component, including nucleic acids, to start and trigger the production of first type interferon and to activate the cytotoxicity by Natural Killercells, often exploited by viruses for immune evasion.In this brief review, we providea general overview of the principal tools of innate immunity, focusing on the immunologic escape implemented byFCoVand FeHV-1 duringinfection.

2.
Virus Res ; 305: 198575, 2021 11.
Article in English | MEDLINE | ID: covidwho-1433886

ABSTRACT

Saliva is an appropriate specimen for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) diagnosis. The possibility of pooling samples of saliva, using non-invasive bibula strips for sampling, was explored employing Bovine coronavirus (BCoV) spiked saliva. In laboratory, up to 30 saliva-soaked strips were pooled in a single tube with 2 mL of medium. After quick adsorption with the medium and vortexing, the liquid was collected and tested with a quantitative molecular assay to quantify viral RNA genome copies. On testing of single and pooled strips, the difference between the median threshold cycles (Ct) value of test performed on the single positive saliva sample and the median Ct value obtained on the pool of 30 strips, was 3.21 cycles. Saliva pooling with bibula strips could allow monitoring of COVID-19 on a large scale, reducing costs for the health bodies in terms of medical material and skilled personnel. Finally, saliva sampling is noninvasive and less traumatic than nasopharyngeal swabs and can be self-collected.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Coronavirus, Bovine/genetics , Genome, Viral , RNA, Viral/genetics , Specimen Handling/methods , COVID-19/virology , COVID-19 Nucleic Acid Testing/economics , Humans , Limit of Detection , Reagent Strips/analysis , SARS-CoV-2/genetics , Saliva/virology
3.
Res Vet Sci ; 135: 450-455, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-909188

ABSTRACT

BRD is associated with infectious agents, but management and transport-stress are trigger factors. Metaphylactic administration of antimicrobial reduces colonization of respiratory tract by pathogens, but the development of antibiotic-resistance raises public health concerns leading to propose new control strategies. The study analyzed nasopharyngeal swabs of 231 imported cattle, 10% of 49 trucks, transported from France to southern Italy and, through Real-time PCR identified the prevalence of the involved pathogens speculating on strategies to reduce the impact of BRD. The samples were tested by Real-time PCR, for the detection of bovine coronavirus (BCoV), bovine respiratory syncytial virus (BRSV), bovine parainfluenza virus (BPiV), bovine adenovirus (BAdV), Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis. Yates-corrected chi squared, or Fisher's exact test were used to compare both animal-health status and positivity/negativity to pathogens, and the relationship between presence/absence of clinical signs and Real-time PCR-positivity. H. somni and BCoV were the most frequently identified pathogens. In BRD-diagnosed cattle, BAdV was detected in 13.8% (19/138), BRSV in 14.5% (20/138) and BPiV in 4.3% (6/138). Healthy cattle were mostly positive for H. somni (89.2%, 83/93). A statistically significant association was observed between clinical signs and positivity to M. haemolytica (p value = 0.016). Although mass-medication and vaccination are used for BRD control, it still remains a primary health problem. Our results highlight that the nasopharyngeal microbiota could be affected by transport and that strategies to enhance calf immunity for reducing BRD-risk development would be more effective if applied at farm of origin prior to loading.


Subject(s)
Cattle Diseases/epidemiology , Coronavirus, Bovine/isolation & purification , Microbiota , Pasteurellaceae/isolation & purification , Respiratory Tract Diseases/veterinary , Animals , Cattle , Cattle Diseases/microbiology , Cattle Diseases/prevention & control , Coronavirus, Bovine/genetics , Epidemiologic Studies , France/epidemiology , Immunity , Italy/epidemiology , Male , Mastadenovirus/genetics , Mastadenovirus/isolation & purification , Nasopharynx/microbiology , Pasteurellaceae/genetics , Respiratory Syncytial Virus, Bovine/genetics , Respiratory Syncytial Virus, Bovine/isolation & purification , Respiratory System/microbiology , Respiratory Tract Diseases/epidemiology , Respiratory Tract Diseases/microbiology , Respiratory Tract Diseases/prevention & control , Respirovirus/genetics , Respirovirus/isolation & purification , Transportation
4.
Vet Microbiol ; 251: 108878, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-808435

ABSTRACT

Canine chaphamaparvovirus (CaChPV) is a newly recognised parvovirus discovered by metagenomic analysis during an outbreak of diarrhoea in dogs in Colorado, USA, in 2017 and more recently detected in diarrhoeic dogs in China. Whether the virus plays a role as canine pathogen and whether it is distributed elsewhere, in other geographical areas, is not known. We performed a case-control study to investigate the possible association of CaChPV with enteritis in dogs. CaChPV DNA was detected both in the stools of diarrhoeic dogs (1.9 %, 3/155) and of healthy animals (1.6 %, 2/120). All the CaChPV-infected dogs with diarrhea were mixed infected with other enteric viruses such as canine parvovirus (formerly CPV-2), canine bufavirus (CBuV) and canine coronavirus (CCoV), whilst none of the asymptomatic CaChPV positive animals resulted co-infected. The nearly full-length genome and the partial capsid protein (VP) gene of three canine strains, Te/36OVUD/19/ITA, Te/37OVUD/19/ITA and Te/70OVUD/19/ITA, were reconstructed. Upon phylogenetic analyses based on the NS1 and VP aa sequences, the Italian CaChPV strains tightly clustered with the American reference viruses. Distinctive residues could be mapped to the deduced variable regions of the VP of canine and feline chaphamaparvoviruses, considered as important markers of host range and pathogenicity for parvoviruses.


Subject(s)
Diarrhea/veterinary , Dog Diseases/virology , Genome, Viral , Parvoviridae Infections/veterinary , Parvovirus, Canine/classification , Animals , Capsid Proteins/genetics , Case-Control Studies , Diarrhea/virology , Dogs/virology , Feces/virology , Host Specificity , Italy , Parvoviridae Infections/diagnosis , Parvoviridae Infections/virology , Parvovirus, Canine/isolation & purification , Pets/virology , Phylogeny , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL